

"Surface Finishing Technology"

Actonall Activation

The Actonall series of chemicals are designed as an alternative to concentrated liquid acids used for activation prior to plating. As such, these products are much safer to handle and store. The Actonall chemicals are used for activation of difficult to plate metals and provide improved oxide and smut removal for maximum adhesion and deposit quality. The Actonall chemicals do not decompose and can be stored for long periods.

Actonall-210

Actonall-210 is a dry acid salt used to replace concentrated sulfuric acid. It also contains special activators and surfactants. It is a free flowing powder that is non-dusting and is free rinsing in use.

Actonall-65

Actonall-65 is a dry acid salt used to provide extra bite on hard to activate metals. Actonall-65 is also very useful in removing silicate films from parts to prevent pits, haze and spotting. It is used along with Actonall-210 to replace more dangerous mineral acids such as hydrofluoric, fluoboric and nitric acids.

Equipment

Conventional acid proof equipment should be used with the Actonall products. Tanks should be lined with PVC, polyethylene, polypropylene and in some cases stainless steel. Do not use fiberglass or lead lined tanks. A ventilation system should be used with all Actonall solutions. Heaters should be made of Teflon, titanium or 316 stainless steel. Do not use quartz heaters or lead coils.

ZERO Discharge Recovery

Actonall-210 and Actonall-65 are compatible with our ZERO Discharge Recovery systems. As such, the components of these products do not form RP products that are detrimental to chemical recycling and reuse.

Waste Disposal

A spent bath will require neutralization with an alkali, such as sodium hydroxide or an alkaline cleaner that also needs disposal. The local authority should be consulted for regulations on suspended solids and dissolved metals. Follow all environmental directives for disposal of these solutions.

Immersion Activation

The following is used on a wide variety of metals prior to plating to replace liquid acids. The immersion time and temperature are dependent upon the metal and its condition.

The operating conditions can be varied depending upon the metal being treated and its surface condition. Concentration, time and temperature are all related. As an example, a lower concentration can be used with a higher temperature or a longer time, etc. We can make specific recommendations based upon your needs. Once established, the bath should be maintained by periodic analysis. Times and temperatures are shown only where these are critical in the tables below, otherwise use **these numbers.** A temperature of 140 F. is selected for typical applications as this provides relatively short dip times and sufficient evaporation so that Zero Discharge Recovery can be used without the need for an evaporator.

General Conditions		
Item	<u>Optimum</u>	<u>Range</u>
Temperature	140 F (unless otherwise shown)	70-160 F.
Time	2-5 minutes, typical	10 seconds-10 minutes.
Agitation	Air agitation recommended.	Air, pumping or mechanical
Filtration	Yes, for best quality	Not needed in all operations

Following are specific recommendations for various applications:

Nickel Activation Prior To Chrome Plating					
Item	<u>Optimum</u>	<u>Range</u>			
Actonall-210	12 oz./gallon	10-20			
Temperature	110 F.	80-140 F.			
Dip Time	60 seconds.	20-90 seconds			

blasting first.

The above is much better than a chromic acid pre-dip to remove absorbed nickel brighteners that cause white patches in chrome deposits and inhibit coverage. See below for severe cases see **Electrolytic Activation**

<u>Steel Alloys –</u>	Light Oxide		<u>Steel Alloys –</u>	Heavy Oxide or	Scale
Item	<u>Optimum</u>	<u>Range</u>	Item	<u>Optimum</u>	Range
Actonall-210	12 oz./gallon	4 - 32	Actonall-210	12 oz./gallon	4 - 32
			Actonall-65	2.5 oz./gallon	1 - 4
Leaded Steel	<u>Alloys</u>		Cast Iron (re	moves silica)	
Item	Optimum	Range	Item	<u>Optimum</u>	Range
Actonall-210	12 oz./gallon	10 - 14	Actonall-210	12 oz./gallon	8 - 16
Actonall-65	4 oz./gal.	3 - 5	Actonall-65	6 oz./gallon	2 - 10
<u>Aluminum</u>			Copper & Bra	ass – scale remov	al
Item	<u>Optimum</u>	Range	Item	<u>Optimum</u>	Range
Actonall-210	24 oz./gallon	16 - 32	Actonall-210	10 oz./gallon	8 - 16
Actonall-65	7 oz./gallon	2 - 12	Actonall-65	2 oz./gallon	1 - 3
Note: Activat	es difficult to pl	ate aluminum.	Note: Reduce Actonall-65 if	or eliminate the there is no scale	•
<u>Carbide, Tun</u> Stellite and Ni	gsten carbide, F	erroTic,	<u>Magnesium</u>		

Item	<u>Optimum</u>	<u>Range</u>	Item	<u>Optimum</u>
Actonall-210	16 oz./gallon	12 - 24	Actonall-210	12 oz./gallon
Actonall-65	1.5 oz./gal.	1 - 2 oz./gal.	Actonall-65	3 oz./gallon
Temperature	80 F.	70 – 90 F.	Time	1.5 minutes
Note: Some n	nay need vapor	or glass bead		

Range

4 - 32

2 - 5

1 - 2

<u>Titanium</u>		
Item	<u>Optimum</u>	<u>Range</u>
Actonall-210	16 oz./gallon	12 - 20
Actonall-65	3 oz./gallon	2 - 5
Temperature	80 F.	70 – 90 F.
Time	1.5 minutes	1-2 minutes

Stainless Steel, # 200, 300 & 400 series Item Optimum Range Attack 12 12

Actonall-210	18 oz./gallon	12 - 24
Actonall-65	8 oz./gal.	4 - 12

Electrolytic Activation

The following is used to remove stubborn scale. Carbon anodes are preferred, but CP lead anodes can also be used, but only for cathodic (direct) current. Do not use lead anodes for either anodic (reverse) or periodic reverse current. Otherwise, either anodic, cathodic or periodic reverse current can be used depending upon the situation and the metal being processed.

General Conditions	(time is as required)	
Item	<u>Optimum</u>	<u>Range</u>
Actonall-210	16 oz./gallon	8 - 32
Temperature	90 F.	70 – 110 F.
Electrode ratio	2:1 (anode: cathode)	
Anodes	Carbon or CP lead (see above)	
Current density	0.5 ASI (72 ASF)	0.3 – 0.7 ASI (50-100 ASF)

Following are specific recommendations for various applications:

<u>Nickel Activation Prior To Chrome Plating (for severe cases)</u>				
Item	<u>Optimum</u>	Range		
Actonall-210	16 oz./gallon	8 - 24 oz./gal.		
Temperature	110 F.	80 – 140 F.		
Dip Time	60 seconds.	30-120 seconds		
Anodes	Carbon only			
Current density	40	10 – 60 ASF		

Hastelloy	v C.	Inconel,	Monel,	17-4	PH	Stainless	&	other	high	nickel	alloys
-----------	------	----------	--------	------	----	------------------	---	-------	------	--------	--------

Item	<u>Optimum</u>	Range
Actonall-210	16 oz./gallon	12 - 24
Actonall-65	2 oz./gal.	1 - 4
Temperature	80 F.	70 – 90 F.
Electrode ratio	2:1 (anode: cathode)	
Anodes	Carbon only	
Current Direction	Parts are cathodic only	
Current density	0.5 ASI (72 ASF)	0.3-0.7 ASI (50-100 ASF)
Time	1 minute	1/2 - 2 minutes
Note: Can also be done by in	nmersion only in some cases.	

High Strength Steels	(sliver removal	& polishing)

Item	<u>Optimum</u>	<u>Range</u>
Actonall-210	16 oz./gallon	12 - 20
Temperature	90 F.	70 – 110 F.
Current Direction	Parts are anodic	
Electrode ratio	2:1 (anode: cathode)	

Anodes Current density Time	Carbon or CP lead (see above) 0.5 ASI (72 ASF) 1 minute	0.3 – 0.7 ASI (50-100 ASF) 0.5 – 1.5 minutes
<u>Monel</u> Item	Optimum	Range
Actonall-210	16 oz./gallon	12 - 20
Temperature	90 F.	70 – 110 F.
Current Direction	Parts are cathodic only	
Electrode ratio	2:1 (anode: cathode)	
Anodes	Carbon only	
Current density	0.5 ASI (72 ASF)	0.3 - 0.7 ASI (50-100 ASF)

Bath Make-Up

Time

The following procedure is recommended. Always use caution when making up an acidic solution. Fill the tank 2/3 full with water; turn off the heaters and turn on the ventilation. Then dissolve the Actonall compound(s) while using caution to avoid splashes. Then, fill with water to the operating volume and agitate thoroughly.

10 seconds only

Caution

These are all industrial chemicals and must be handled carefully and in accordance with the directives provided in the individual SDS forms.

Read and understand the SDS on all of these chemicals before handling or using. Ensure that all regulatory standards are followed and limit personal exposure as required for Cr(VI) by OSHA.

Avoid personal contact with these chemicals, avoid splashing and avoid breathing any fumes released during operation. Do not inhale any dust, mist or vapors from these chemicals. Do not allow these products to contact the skin or eyes. In case of contact, flush immediately with large amounts of fresh water and seek immediate medical attention.

Wear protective clothing such as aprons, gloves, face masks and respirators. Be sure that adequate eyewashes and emergency showers are available nearby before handling or using any of these chemicals.

Designated work clothing should be worn while using these chemicals and the worker(s) should thoroughly shower and change into fresh-clean street clothing before going home. Decontaminate all work clothing before reuse.

The user is responsible for providing adequate work clothing, personal protection, and limiting personal exposure and providing any required clean-up, decontamination as well as any needed medical attention.